References

References

[1]S. Acer. A Recursive Graph Bipartitioning Algorithm by Vertex Separators with Fixed Vertices for Permuting Sparse Matrices into Block Diagonal Form With Overlap. PhD thesis, Bilkent University, 2011.
[2]H. Alt. Der Überträgungswinkel und seine bedeutung für das konstruieren periodischer getriebe. Werkstattstechnik, 26(S.):61–64, 1932.
[3]C. Aykanat, A. Pinar, and Ü. V. Çatalyürek. Permuting sparse rectangular matrices into block-diagonal form. SIAM Journal on Scientific Computing, 25(6):1860–1879, 2004.
[4]R. S. Ball. A Treatise on the Theory of Screws. Cambridge University Press, 1900.
[5]T.L. Booth. Sequential machines and automata theory. Volume 3. Wiley New York, 1967.
[6]T. Bray. The javascript object notation (json) data interchange format. 2014.
[7]R.E. Bryant and D.R. O’Hallaron. Computer systems: a programmer’s perspective. Volume 2. Prentice Hall Upper Saddle River, 2003.
[8]R.J. Cave and J.F. Stanton. Block diagonalization of the equation-of-motion coupled cluster effective hamiltonian: treatment of diabatic potential constants and triple excitations. The Journal of Chemical Physics, 140(21):214112, 2014.
[9]W.T. Chang, C.C. Lin, and J.J. Lee. Force transmissibility performance of parallel manipulators. Journal of Robotic Systems, 20(11):659–670, 2003.
[10]C. Chen and J. Angeles. Generalized transmission index and transmission quality for spatial linkages. Mechanism and Machine Theory, 42(9):1225–1237, 2007.
[11]T.H. Cormen. Introduction to Algorithms, 3rd Edition:. MIT Press, 2009. ISBN 9780262033848.
[12]J.G. de Jalón, A. Callejo, and A.F. Hidalgo. Efficient solution of maggi’s equations. Journal of computational and nonlinear dynamics, 7(2):021003, 2012.
[13]J. Denavit, R.S. Hartenberg, R. Razi, and J.J. Uicker. Velocity, acceleration, and static-force analyses of spatial linkages. Journal of Applied Mechanics, 32(4):903–910, 1965.
[14]I.S. Duff and J.K. Reid. The design of ma48: a code for the direct solution of sparse unsymmetric linear systems of equations. ACM Transactions on Mathematical Software (TOMS), 22(2):187–226, 1996.
[15]F. Dyson. Principles of Mechanisms. Oxford University Press, 1928.
[16]R. Featherstone. A divide-and-conquer articulated-body algorithm for parallel o (log (n)) calculation of rigid-body dynamics. part 2: trees, loops, and accuracy. The International Journal of Robotics Research, 18(9):876–892, 1999.
[17]R. Featherstone. Efficient factorization of the joint-space inertia matrix for branched kinematic trees. The International Journal of Robotics Research, 24(6):487–500, 2005.
[18]R. Featherstone. Rigid Body Dynamics Algorithms. Springer-Verlag New York, Inc., New York, NY, USA, 2008. ISBN 9780387743141.
[19]F. Freudenstein and L.S. Woo. Kinematic analysis of spatial mechanisms by means of screw coordinates. part 2 - analysis of spatial mechanisms. Journal of Engineering for Industry, pages 67, 1971.
[20]A. Gessler, T. Schulze, K. Kulling, and D. Nadlinger. Assimp open asset import library. URL: http://assimp.sourceforge.net/.
[21]G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 1996. ISBN 9780801854149.
[22]M. González, F. González, D. Dopico, and A. Luaces. On the effect of linear algebra implementations in real-time multibody system dynamics. Computational Mechanics, 41(4):607–615, 2008.
[23]W.G. Green. Theory of Machines. Blackie and Son, 1955.
[24]K. Hain. Applied Kinematics. McGraw–Hill, 1967.
[25]R.S. Hartenberg and J. Denavit. Kinematic Synthesis of Linkages. McGraw–Hill, 1962.
[26]A.F. Hidalgo, F.J. García de Jalón, and S. Tapia Fernandez. High Performance Algorithms and Implementations Using Sparse and Parallelization Techniques on MBS. In Proc. of ECCOMAS Thematic Conference, Brussels, Belgium. 2011.
[27]J. Hirschhorn. Kinematics and Dynamics of Plane Mechanisms. McGraw–Hill, 1962.
[28]J.E. Holte and T.R. Chase. A force transmission index for planar linkage mechanisms. In Proceedings of the ASME Mechanisms Conference, 377–386. 1994.
[29]M.L. Hornick and B. Ravani. Computer-aided off-line planning and programming of robot motion. The International journal of robotics research, 4(4):18–31, 1986.
[30]N.L. Hornick and B. Ravani. A data structure and data base design for model driven robot programming. In Robotics and Automation. Proceedings. 1986 IEEE International Conference on, volume 3, 1082–1086. IEEE, 1986.
[31]N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot simulator. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2149–2154. Sendai, Japan, Sep 2004.
[32]J. Lee, J. Duffy, and M. Keler. The optimum quality index for the stability of in-parallel planar platform devices. Journal of Mechanical Design, 121(1):15–20, 1999.
[33]P. Lehtinen. Jansson Documentation. ReadTheDocs, 2.6 edition, 2014.
[34]D. Lent. Analysis and Design of Mechanisms. Prentice Hall, 1961.
[35]K. Lilly and D. Orin. Efficient O(n) recursive computation of the operational space inertia matrix. IEEE Transactions on Systems, Man and Cybernetics, 1993.
[36]C.C. Lin and W.T. Chang. The force transmissivity index of planar linkage mechanisms. Mechanism and Machine Theory, 37(12):1465 – 1485, 2002. URL: http://www.sciencedirect.com/science/article/pii/S0094114X02000708, doi:http://dx.doi.org/10.1016/S0094-114X(02)00070-8.
[37]T. A. Loduha and B. Ravani. On first–order decoupling of equations of motion for constrained dynamical systems. Journal of Applied Mechanics, 62:216–222, 1995.
[38]T. Lozano-Pérez and R.A. Brooks. An approach to automatic robot programming. In M.S. Pickett and J.W. Boyse, editors, Solid Modeling by Computers, pages 293–328. Springer US, 1984. URL: http://dx.doi.org/10.1007/978-1-4613-2811-7_14, doi:10.1007/978-1-4613-2811-7_14.
[39]G.A. Maggi. Principii della Teoria Matematica del Movimento Dei Corpi: Corso di Meccanica Razionale. Ulrico Hoepli, 1896.
[40]G.A. Maggi. Di alcune nuove forme delle equazioni della dinamica applicabili ai systemi analonomi. Atti Accad. Naz. Lincei Rend. Cl. Fis. Mat., X:287–291, 1901.
[41]N. K. Mani, E. J. Haug, and K. E. Atkinson. Application of singular value decomposition for analysis of mechanical system dynamics. Journal of Mechanical Design, 107(1):82–87, 1985.
[42]R. Mittra and C. Klein. The use of pivot ratios as a guide to stability of matrix equations arising in the method of moments. Antennas and Propagation, IEEE Transactions on, 23(3):448–450, May 1975. doi:10.1109/TAP.1975.1141067.
[43]R.M. Murray, Z. Li, and S.S. Sastry. A Mathematical Introduction to Robotic Manipulation. Taylor & Francis, 1994. ISBN 9780849379819.
[44]P. E. Nikravesh. Some methods for dynamic analysis of constrained mechanical systems: a survey. In E.J. Haug, editor, Computer Aided Analysis and Optimization of Mechanical System Dynamics, volume 9 of NATO ASI Series, pages 351–368. Springer Berlin Heidelberg, 1984.
[45]N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta. Comparison of json and xml data interchange formats: a case study. Caine, 9:157–162, 2009.
[46]F.C. Park and B. Ravani. Smooth invariant interpolation of rotations. ACM Transactions on Graphics (TOG), 16(3):277–295, 1997.
[47]L. A. Pars. A Treatise on Analytical Dynamics. Ox Bow Press, 1979.
[48]M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.Y. Ng. Ros: an open-source robot operating system. In ICRA workshop on open source software, volume 3, 5. 2009.
[49]B. Ravani and M.L. Hornick. Star: a simulation tool for automation and robotics. Control and Programming in Advanced Manufacturing, K. Rathmill ed., Int’l Trends in Manufacturing Tech., IFS Pub, pages 269–294, 1988.
[50]R.E. Roberson and J. Wittenburg. A dynamical formalism for an arbitrary number of interconnected rigid bodies, with reference to the problem of satellite attitude control. In International Federation of Automatic Control, Congress, 3 Rd, London, England, 1966. 1966.
[51]G. Rodriguez, A. Jain, and K. Kreutz-Delgado. A spatial operator algebra for manipulator modeling and control. Int. J. Robotics Research, 10(4):371–381, 1991.
[52]J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference Manual, The. Pearson Higher Education, 2004.
[53]J. M. Selig. Geometric Fundamentals of Robotics. Monographs in Computer Science. Springer, 2005. ISBN 9780387208749.
[54]R. Serban, D. Negrut, E.J. Haug, and F.A. Potra. A topology-based approach for exploiting sparsity in multibody dynamics: cartesian formulation. Journal of Structural Mechanics, 25(3):379–396, 1997.
[55]S. Seshu and M.B. Reed. Linear graphs and electrical networks. Addison-Wesley Reading, Mass., 1961.
[56]P.N. Sheth. A digital computer based simulation procedure for multiple degree of freedom mechanical systems with geometric constraints. PhD thesis, University of Wisconsin–Madison, 1972.
[57]P.N. Sheth and J.J. Uicker. IMP (Integrated Mechanisms Program), a computer-aided design analysis system for mechanisms and linkage. Journal of Manufacturing Science and Engineering, 94(2):454–464, 1972.
[58]K. Shoemake. Animating rotation with quaternion curves. In ACM SIGGRAPH computer graphics, volume 19, 245–254. ACM, 1985.
[59]Siemens. Tecnomatix. URL: http://siemens.com/tecnomatix.
[60]D.V. Steward. Partitioning and tearing systems of equations. Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis, 2(2):345–365, 1965.
[61]G. Strang. Linear Algebra and Its Applications. Brooks Cole, 3 edition, February 1988. ISBN 0155510053.
[62]G. Sutherland and B. Roth. A transmission index for spatial mechanisms. Journal of Manufacturing Science and Engineering, 95(2):589–597, 1973.
[63]S. Toledo. Improving the memory-system performance of sparse-matrix vector multiplication. IBM Journal of research and development, 41(6):711–725, 1997.
[64]M.J. Tsai and H.W. Lee. The transmissivity and manipulability of spatial mechanisms. Journal of Mechanical Design, 116(1):137–143, 1994.
[65]A.M. Turing. Rounding–off errors in matrix processes. Quart. J. of Mech. Appl. Math, 1:287–308, 1948.
[66]J.J. Uicker, J. Denavit, and R.S. Hartenburg. An iterative method for the displacement analysis of spatial mechanisms. Journal of Applied Mechanics, ASME Transactions, pages 309–14, 1964.
[67]J.J. Uicker, B. Ravani, and P.N. Sheth. Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems. Cambridge University Press, 2013.
[68]B. Uçar and C. Aykanat. Partitioning sparse matrices for parallel preconditioned iterative methods. SIAM Journal on Scientific Computing, 29(4):1683–1709, 2007.
[69]K.T. Wehage, R.A. Wehage, and B. Ravani. Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mechanism and Machine Theory, 92:464–483, 2015.
[70]R.A. Wehage. Generalized Coordinate Partitioning in Dynamic Analysis of Mechanical Systems. PhD thesis, University of Iowa, 1981.
[71]R.A. Wehage and E.J. Haug. Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. Journal of Mechanical Design, 104:247–255, 1982.
[72]R.A. Wehage and W.Y. Loh. Application of svd to independent variable definition in constrained mechanical systems. ASME Dyn Sys Control Div Publ DSC, ASME, New York, NY,(USA), 1993, 52:71–79, 1993.
[73]C.R. Whaley and A. Petitet. Minimizing development and maintenance costs in supporting persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121, February 2005.
[74]P. Woronetz. Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt. ():, 1910.
[75]F. Wu and H.M. Lankarani. New parameter for transmission quality and output sensitivity analysis of mechanisms. In 22 nd Biennial Mechanisms Conference, 103–109. 1992.
[76]D.C. Yang, J. Xiong, and X.D. Yang. A simple method to calculate mobility with jacobian. Mechanism and Machine Theory, 43(9):1175–1185, 2008.
[77]M. Yuan and F. Freudenstein. Kinematic analysis of spatial mechanisms by means of screw coordinates — part 2: analysis of spatial mechanisms. In volume 93, 67–73. ASME, 1970.
[78]F. Zhang. The Schur complement and its applications. Volume 4. Springer, 2006.
[79]Y. Zhang. Quality index and kinematic analysis of spatial redundant in-parallel manipulators. PhD thesis, University of Florida, 2000.
[80]Jabez Technologies. Robotmaster. URL: http://www.robotmaster.com.